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Abstract

This paper presents an optimal bidding strategy for a technical and commercial virtual
power plant (VPP) in medium-term time horizon. A VPP includes various distributed
energy resources (DERs) that can participate in the Pool and Futures markets. Although
medium/long-term scheduling provides the opportunity to participate in the futures mar-
ket, it also raises the possibility of unit failure. In this regard, the impact of distributed
generation (DG) units’ failure, as an important challenge in VPP, is incorporated in the
proposed model. The model is formulated as a risk-constrained two-stage stochastic prob-
lem. The VPP signs futures market contracts in the first stage, and in the second stage, it
participates in the day-ahead (DA) market and manages its DERs. Long short-term mem-
ory neural network and scenario generation and reduction methods are used to capture the
uncertainty parameters of electrical load, DA market prices, wind speed, and solar radiation
in the proposed model. The performance of proposed model is investigated in different
cases. The obtained results show that the VPP can compensate the losses caused by the
DG units’ failure through taking advantage of the arbitrage opportunity.

1 INTRODUCTION

1.1 Motivation

The restructuring and liberalization of the power system pro-
vide various economic opportunities for electricity producers
in the electricity markets. In this regard, the producers can
sell their electrical power in a competitive environment [1]. In
the wholesale electricity market, the participants were mainly
large and medium-sized producers, and small producers could
not enter this competitive environment due to their insignif-
icant capacity. In recent years, the penetration of distributed
energy resources (DERs), which includes distributed generation
(DG), energy storage systems (ESS), renewable energy systems
(RES) and flexible loads (FL), is increased, and this trend is
expected to grow in the coming years [2]. DERs can not only
supply the growing electrical load of the distribution network,
but they can also reduce power transmission costs and fossil
fuel costs. Additionally, since these units produce less pollution
than conventional power plants, greenhouse gas emissions are
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decreased [3]. Despite these advantages, DERs are still con-
sidered small-scale resources and are unable to compete with
other wholesale electricity market participants. So, they must
be aggregated and managed as a single entity to overcome this
challenge. Two of the most common concepts of aggregating
DERs are micro-grids and VPPs, which are discussed in detail
in [4].

VPP is a concept that uses smart grid technology to aggregate
DERs and manages them as a single power plant to participate
in different electrical markets, such as the pool and futures mar-
kets, and supply electrical demand. The VPP can manage DERs
from both commercial and technical aspects. The commercial
virtual power plant (CVPP) gathers the economical parame-
ters of its DERs and estimates market participants’ strategies in
order to maximize the VPP’s profit in electricity markets. On the
other hand, the technical virtual power plant (TVPP) ensures
the safe operation of VPP by considering DERs’ technical
constraints (e.g. minimum and maximum generation, operation
status) and network limitations (e.g. distribution lines power
flow) [5].
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The VPP operator must schedule its units in a specific period,
such as daily or weekly [6]. In weekly scheduling, the VPP has
the opportunity to participate in the futures market and signs
forward contracts. Unlike the DA market, the futures market
prices are certain, but they are usually lower than DA mar-
ket prices. The various features of these markets help the VPP
operator to increase its profit by participating in the DA mar-
ket and reduce the risk of price fluctuations by participating in
the futures market. Although medium-term scheduling provides
an opportunity for VPP to participate in the futures market, it
increases the probability of unit failure, which has a significant
impact on VPP’s profit. Therefore, it is essential to consider
the impact of the failure of commonly used units to avoid the
consequences [7].

1.2 Literature review

The concept of VPP is utilized in many papers to aggregate
DERs for the sake of many purposes. In [8], a VPP with
high penetration of plug-in hybrid electric vehicles (PHEV) is
developed to minimize operation cost. In [9], a VPP including
wind power plant (WPP), photovoltaic (PV), combined heat and
power (CHP), micro-turbine (MT), boiler, ESS, and buffer tank
is presented that participates in the energy and spinning reserve
markets to increase daily profits. A bi-level optimization model
for the coordinated operation of electricity and gas networks
is presented in [10]. This study utilized a VPP to manage elec-
tricity loads as demand response program. The authors of [11]
developed a block chain based VPP in the distribution network
that can manage its DERs in a decentralized manner. In [12], an
optimal bidding strategy model is proposed for a VPP to partic-
ipate in the DA, spinning reserve, and ancillary service markets.
A VPP is modelled in [13], including RES, ESS, CHP, and a
boiler in order to reduce environmental pollution by promoting
the VPP management.

According to the reference [14], many articles in recent years
are studied the participation of VPP in the pool market. In
[15], a VPP is considered to represent a stochastic schedul-
ing problem in which VPP can participate in the electric and
thermal DA markets and supply electrical and thermal loads
to maximize the profit. A scheduling problem for VPPs in a
competitive environment with EV penetration is presented in
[16]. The problem in [16] is bi-level in which VPPs goal is
offering a proper strategy to attract more EVs in their park-
ing lots to increase their revenues in the DA and reserve
markets. A two-stage stochastic problem for a VPP, including
DGs and FLs, is presented in [17]. The VPP in [17] attempts
to present its optimal bidding/offering strategy for the DA,
real-time, and spinning reserve markets. Although the VPP par-
ticipation in the pool market is studied in the prior papers, in
none of them the VPP participation in the futures market is
investigated.

In recent years, in just some limited research works, the par-
ticipation of VPP in the futures market is considered [14]. The
futures market, also known as the Derivatives Exchange (DX),
is a market in which electric power is traded at today prices and

delivered in the future. This market has different contracts such
as forward, swap, and option. It should be noted that the con-
tract period of futures market varies from 1 week to several
years. The main purpose of this market is to reduce financial
risk due to high price volatility in the pool market [18–20]. In
[21], a risk-averse two-stage stochastic model is presented for
the participation of the VPP in the DA market, futures mar-
ket, and contracts with withdrawal penalty (CWP). This paper
aims to optimize the management of electrical and thermal units
over a short-term time horizon to maximize the VPP’s profit. In
[18], a risk-constrained two-stage problem with a medium-term
time horizon is presented in which the VPP can form an opti-
mal coalition of DERs. The main purpose of the VPP in [18] is
to maximize its profit by participating in pool and futures mar-
kets and signing bilateral contracts. A risk-constrained two-stage
stochastic problem is modelled with a long-term time horizon
in [19]. In this study, the VPP can compete with other VPPs by
offering a reasonable rental rate for DERs. By using the rented
DERs, VPP can participate in DA and futures markets and sign
bilateral contracts to increase the profit. The VPP is modelled as
single bus in [18, 19, 21]; therefore, the technical constraints of
the distribution network (e.g. network topology and lines power
flow limitations) are not taken into account. In addition, the
time horizon in [18] and [19] is considered as medium- and
long-term periods, respectively. Although medium- and long-
term time horizons introduce the risk of VPP unit failure in the
problem, the uncertainty caused by unit failure is not addressed
in [18] and [19].

There are many uncertain parameters in VPP models due to
the existence of multiple DERs and participation in different
energy markets. The most important uncertainty parameters in
VPP models include generated power of RES, failure of com-
monly used units, energy market prices, and electrical load.
The widely used methods for handling the uncertainties are
robust optimization [22], scenario generation and reduction
[23], Monte Carlo simulation [24], point estimation method [25],
and hybrid robust/stochastic method [26]. In order to use each
of the mentioned uncertainty handling methods, some infor-
mation related to the uncertainty parameters is required. This
information can be the forecasted data, the statistical data, or
the limit of these parameters. For example, the forecasted data
of DA market prices are required to generate scenarios for this
parameter. In this regard, the data should be obtained using
time series prediction methods. In addition, a more precise fore-
casting method can lead to more accurate results. Thus, the
number of scenarios and computational burden will be reduced.
However, in the above-mentioned papers, the prediction of
uncertainty parameters using time series prediction methods
is ignored, and these papers have used theoretical information
as forecasted data. Therefore, the forecast error of uncertainty
parameters is unknown, and the highest forecast error should
be considered to cover the uncertainty, which increases the
problem’s computational burden. It should be noted that fore-
cast error varies for different uncertainty parameters, and each
parameter uncertainty can be covered according to its forecast
error. In other words, a parameter with a lower forecast error
requires fewer scenarios to cover its uncertainty. Consequently,
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TABLE 1 Comparison of the reviewed research works.

Market Formulation type Uncertainty parameters

Ref. Pool Futures Network

Determ-

inistic Stochastic Load Price

Wind

speed Radiation

Unit

failure

Uncertainty

method

Risk man-

agement

[9] ✓ ✓ ✓ ✓ ✓ ✓ SG Downside
risk

[10] ✓ ✓ ✓ — —

[12] ✓ ✓ ✓ — —

[15] ✓ ✓ ✓ ✓ ✓ ✓ ✓ SG —

[17] ✓ ✓ ✓ ✓ ✓ ✓ SG CVaR

[21] ✓ ✓ ✓ ✓ ✓ ✓ SG CVaR

[18] ✓ ✓ ✓ ✓ ✓ ✓ SG CVaR

[19] ✓ ✓ ✓ ✓ ✓ SG CVaR

[22] ✓ ✓ ✓ ✓ Robust —

[24] ✓ ✓ ✓ ✓ ✓ Monte Carlo —

[26] ✓ ✓ ✓ ✓ ✓ Hybrid
robust/stochastic

—

This paper ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ LSTM + SG CVaR

Abbreviations: CVaR, conditional value at risk; LSTM, long short-term memory; SG, scenario generation.

it is a more reasonable methodology to predict the uncertainty
parameters first and then capture the uncertainty based on the
forecast error. This can ensure that the results of the problem
are more accurate and reduce the computational burden.

The reviewed papers in this section are summarized in
Table 1. This table is designed based on market participation,
network modelling, formulation type, risk measurement, and
uncertainty handling methods.

1.3 Research gaps and contributions

The participation of the VPP in the futures market not only
reduces the risk caused by the price fluctuations of the DA mar-
ket but also provides an arbitrage opportunity for the VPP’s
operator. Despite these advantages, few recent studies have
investigated the participation of the VPP in the futures mar-
ket. Although the VPP’s involvement in the futures market is
considered in [18] and [19], the constraints of the distribution
network, such as the power flow and the location of the units,
are not taken into account. In other words, in these studies, the
VPP is modelled from a commercial point of view, and its tech-
nical constraints are not examined. The participation of the VPP
in the futures market requires medium/long-term scheduling,
which creates uncertainty related to the failure of commonly
used units. If this uncertainty is not considered, a portion of the
loads will be lost, and the costs of the VPP will increase. The
uncertainty related to the failure of commonly used units is not
considered in any of the papers mentioned above.

To fill the mentioned research gaps, here, the optimal bid-
ding strategy of VPP for participating in the pool and futures
markets is modelled as a two-stage risk constrained stochastic
problem. Moreover, the commercial and technical aspects of the

VPP such as distribution network constraints and the impact of
unit failure are investigated. It should be mentioned that by par-
ticipating in the futures market, the VPP reduces its financial
risk and provides an arbitrage opportunity. In what follows, the
contributions of this paper are expressed:

∙ Modelling a two-stage optimal bidding strategy for a techni-
cal and commercial VPP to participate in futures and pool
markets considering risk constraints through the conditional
value at risk (CVaR) method.

∙ Investigating the impact of unit failure on VPP’s profit and
risk of the problem in the proposed model.

∙ Utilizing a hybrid method of LSTM neural network and
scenario generation and reduction to handle problem uncer-
tainty in the presence of actual uncertainty data.

∙ Arbitrage modelling as a VPP trading strategy on different
energy trading floors available in the energy markets.

The rest of this paper is organized as follows. Section 2
describes the model framework, including the VPP and market
structure. Section 3 discusses uncertainty modelling. Sections 4
and 5 present the problem formulation and the numerical
results, respectively. Finally, the paper is concluded in Section 6.

2 MODEL FRAMEWORK

A VPP including DG, ESS, WPP, PV, and FL units is proposed
here. As shown in Figure 1, the proposed VPP has two units
for each technology, which are distributed throughout a radial
network. It is also assumed that the VPP operator owns all net-
work units and controls them centrally. According to Figure 1,
the VPP is connected to the upstream network through node
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4 GHASEMI-OLANLARI ET AL.

FIGURE 1 The overall structure of the proposed virtual power plant. DG, distributed generation; ESS, energy storage systems; FL, flexible loads; PV,
photovoltaic; WPP, wind power plant.

1 and can trade power with the pool and futures markets. In
this study, the VPP can signs the forward contracts of futures
market. For the sake of simplicity and to prevent the extra com-
putational complexity of the problem, the DA market is chosen
among the pool markets.

The proposed model is formulated as a two-stage stochastic
problem. In the first stage, the VPP signs forward contracts in
the futures market, and in the second stage, the VPP manages
its units and participates in the DA market. It should be noted
that the network loads are also supplied at this stage. The first
stage variables are scenario-independent, while the second stage
variables are scenario-dependent. Moreover, the time horizon
of the problem is one week with hourly intervals. It is notewor-
thy that the VPP will participate in the DA market as a price
taker. As mentioned earlier, the time horizon of the problem in
this study is 1 week. Therefore, DA market prices are predicted
for all hours of the under study week, and different scenarios
are generated to cover the uncertainty of the prices by the VPP
operator.

3 UNCERTAINTY CAPTURING

3.1 Uncertainty capturing of time series

Here, to capture the uncertainty of electrical load, DA mar-
ket prices, wind speed, and solar radiation, data prediction
using LSTM neural network and scenario generation is utilized.
LSTM neural network is a recurrent neural network that can
learn short- and long-term temporal dependencies between data
without getting stuck in a gradient vanishing problem. Figure 2
shows an LSTM unit’s structure consisting of a cell state and
three gates, including forget, input, and output. The LSTM unit
can add and remove information from the cell state using its
gates. In fact, gates control the information stored in the cell

state. The forget gate removes unnecessary information from
the cell state. The input gate stores crucial new information in
the cell state. This gate identifies important new information
and then adds a coefficient of this information to the cell state.
The new cell state (ct ) is updated using the forget and input
gates. Finally, the output gate specifies the output information
of the LSTM unit. The hidden state (ht ) is the filtered version of
the cell state [12, 27, 28]. The formulation of the LSTM network
is presented in Equations (1)–(6):

ft = 𝜎
(
W f xt +U f ht−1 + b f

)
, (1)

it = 𝜎
(
W ixt +U iht−1 + bi

)
, (2)

ot = 𝜎 (W oxt +U oht−1 + bo) , (3)

c̃t = tanh (W cxt +U cht−1 + bc ) , (4)

ct = ft ⊙ ct−1 + it ⊙ c̃t , (5)

ht = ot ⊙ tanh (ct ) . (6)

The variables W , U and b that are determined during the
neural network training process are the input weight matrix,
the recurrent connection weight matrix, and the bias vector,
respectively. ct is the cell state variable and the variables ft , it
and ot are forget, input, and output gates, respectively. xt is
the input vector of the LSTM unit, and ht is the related out-
put vector. It should be noted that the symbols 𝜎, tanh and ⊙
are the sigmoid activation function, the hyperbolic tangent acti-
vation function, and the element-wise multiplication function,
respectively.
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GHASEMI-OLANLARI ET AL. 5

FIGURE 2 The overall structure of data prediction using LSTM neural network. LSTM, long short-term memory.

Figure 2 shows the overall structure of data prediction. First,
historical data is imported into the pre-processing module. In
this module, filling in missing data, splitting the data into train-
ing, validation and test sets, and normalizing the data are done.
Second, the training and validation data is imported into the
feature selection module. In this step, applying lag on the train-
ing and validation data makes this data suitable for supervised
learning. Then, we apply input (X train) and output data (Y train)
along with the settings to the LSTM neural network. The main
settings of the LSTM neural network include the number of
hidden layers, the number of neurons in each layer, the learn-
ing rate, and the optimization algorithm. In this step, the neural
network learns the pattern between training data and builds
a model for it. Finally, test data and the model are applied
to the prediction module to obtain the forecasted data using
the walk-forward method [29]. After the forecasted data are
obtained, several scenarios are generated using their proba-
bility density functions (PDFs) [30]. It should be noted that
there are a considerable number of uncertainty parameters in
this problem; consequently, it is possible to skip generating
scenarios for parameters with an acceptable forecast error to
decrease the computational burden of the problem. In other
words, the indicated prediction method ensures that the uncer-
tainty associated with these parameters is covered. For other
parameters with a high forecast error, numerous scenarios
are generated. Then, these scenarios are reduced using the
Kmeans method to decrease the computational burden of the
problem [31].

3.2 Uncertainty capturing of DG units

Scenario generation to demonstrate the availability state of
the generation unit requires two parameters, mean time to
repair (MTTR) and mean time to failure (MTTF). These two
parameters are determined based on the technology of each

generation unit. The time between two consecutive failures
and the time required to repair the unit’s failure follow an
exponential distribution which is defined as the following
equations.

tF = −MTTF × ln (u1) (7)

tR = −MTTR × ln (u2) (8)

In (7) and (8), u1 and u2 are random numbers between 0 and
1 that is generated using a uniform distribution. As a result, dif-
ferent values for tF and tR are employed to show the state of the
generation unit. Figure 3 represents a generated scenario for a
DG unit. According to this figure, t

(i )
F

represents the time for the

ith failure to occur, and t
(i )
R

represents the time to repair the ith

failure. Further information about the modelling of this method
is available in [7, 32].

4 PROBLEM FORMULATION

The optimal bidding strategy of VPP is modelled as a two-stage
stochastic problem with a 1-week time horizon. In the first
stage, the VPP operator adjusts its contracts with the futures
market for the following week. In the second stage, the opti-
mal exchanged power of the VPP with the DA market and
the optimal generation of the VPP units are determined. Var-
ious uncertainty parameters can be considered in the proposed
model, including the high price volatility of the DA market and
the impact of unit failure, as the riskiest ones. These uncertain-
ties can increase the standard deviation of VPP profit, which is
required to be reduced using the risk management technique.
The CVaR risk measure is used to make a trade-off between
the expected profit of VPP and the risk [33]. The problem
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6 GHASEMI-OLANLARI ET AL.

FIGURE 3 Availability scenario of a DG unit. DG, distributed generation.

formulations are expressed as follows.

max OF = (1 − 𝛽) ×

[
RDX +

∑
s

𝜋s ×
(
RDA

s + RRetail
s −C DER

s

)]

+ 𝛽 ×

[
𝜉 −

1

1−𝛼
×
∑

s

𝜋s × 𝜂s

] (9)

RDX =
∑

c

∑
b

∑
t

(
P

DX ,sell
c,b,t × 𝜆DX ,sell

c,b − P
DX ,buy

c,b,t × 𝜆
DX ,buy

c,b

)
× Δt (10)

RDA
s =

∑
t

PDA
t ,s × 𝜆DA

t ,s × Δt ∀s ∈ ΩS (11)

RRetail
s =

∑
i

∑
t

PDi,t ,s × 𝜆
Retail ∀s ∈ ΩS (12)

C DER
s = C DG

s +C ESS
s ∀s ∈ ΩS (13)

The objective function is given in (9) consists of two parts. In
the first part, the expected profit of VPP is maximized, and in
the second part, the CVaR is included to represent the risk aver-
sion of the VPP operator. The expected profit of VPP includes
the profit obtained from the futures market, the profit obtained
from the DA market, the expected retail revenue and opera-
tion cost of units, respectively. As β increases to 1, the problem
becomes more conservative and less risky. Furthermore, if β
becomes zero, it will be risk-neutral. The chosen value of β
depends on the decision of the VPP operator.

The VPP revenue from the futures market is equal to the total
profit from the sale of power minus the total cost of purchasing
power in the contracts of this market, presented in (10). In (11)
and (12), VPP revenue from the DA market and VPP retail rev-
enue are defined, respectively. If FLs reduce their load demand,
retail revenue is reduced. Consequently, the VPP tries to supply
all of its load and avoids load curtailment as much as possible.
In (13) the operation cost of DG and ESS units in each scenario

is presented.

PDX
c,b,t = P

DX ,sell
c,b,t − P

DX ,buy

c,b,t ∀c ∈ ΩC , b ∈ ΩB , t ∈ ΩT , (14)

P
DX ,sell

c,b,t = u
DX ,sell
c,b,t × P

DX ,Block
c,b ∀c ∈ ΩC , b ∈ ΩB , t ∈ ΩT ,

(15)

P
DX ,buy

c,b,t = u
DX ,buy

c,b,t × P
DX ,Block

c,b ∀c ∈ ΩC , b ∈ ΩB , t ∈ ΩT ,
(16)

u
DX ,sell
c,b,t ≤ TC DX

c,t ∀c ∈ ΩC , b ∈ ΩB , t ∈ ΩT , (17)

u
DX ,buy

c,b,t ≤ TC DX
c,t ∀c ∈ ΩC , b ∈ ΩB , t ∈ ΩT , (18)

u
DX ,sell
c,b,t + u

DX ,buy

c,b,t ≤ 1 ∀c ∈ ΩC , b ∈ ΩB , t ∈ ΩT , (19)

u
DX ,sell
c,b,t ≥ u

DX ,sell
c,b+1,t ∀c ∈ ΩC , b ∈ ΩB , t ∈ ΩT , (20)

u
DX ,buy

c,b,t ≥ u
DX ,buy

c,b+1,t ∀c ∈ ΩC , b ∈ ΩB , t ∈ ΩT . (21)

In (14)–(21), the related constraints of futures market are
defined. The quantity of power traded with the futures market
is formulated in Equation (14). The first term on the right-
hand-side of (12) represents the sale of power, and the second
term represents the purchase of power from this market. In (15)
and (16), the number of sold and purchased power blocks in
each contract is specified. According to (17) and (18), trading in
futures markets contracts is permitted only during certain hours.
For instance, the peak contract is only signed during peak hours.
In (19), simultaneous signing of the sales and purchase contract
is avoided. The constraints in (20) and (21) indicate the prior-
ity of block b over block b+1. These constraints indicate that
the blocks of each contract in the futures market must be traded
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GHASEMI-OLANLARI ET AL. 7

in order. It should be noted that according to the equality that
exists in (15) and (16), the existence of (20) and (21) is necessary
for the futures market blocks to be traded in order. If (20) and
(21) did not exist, the VPP could, for example, buy the second
block of futures market contracts without buying the first block
of that contract.

PDA
t ,s = P

DA,sell
t ,s − P

DA,buy
t ,s ∀t ∈ ΩT , s ∈ ΩS , (22)

P
DA,sell

t ,s ≤ PDA,max × u
DA,sell
t ,s ∀t ∈ ΩT , s ∈ ΩS , (23)

P
DA,buy

t ,s ≤ PDA,max × u
DA,buy
t ,s ∀t ∈ ΩT , s ∈ ΩS , (24)

u
DA,sell
t ,s + u

DA,buy
t ,s ≤ 1 ∀t ∈ ΩT , s ∈ ΩS . (25)

In (22)–(25) the power exchange between the VPP and the
DA market is modelled. Equation (22) represents the amount
of power exchanged in this market. The constraints in (23) and
(24) indicate the amount of sold and purchased power. The
constraint in (25) stands for preventing simultaneous trading in
the DA market. It should be noted that the purchase and sale
amounts of the DA market are defined separately to prevent the
VPP from using the arbitrage opportunity.

u
DA,buy
t ,s + u

DX ,sell
c,b,t ≤ 1 ∀t ∈ ΩT , s ∈ ΩS , c ∈ ΩC , b ∈ ΩB ,

(26)

u
DA,sell
t ,s + u

DX ,buy

c,b,t ≤ 1 ∀t ∈ ΩT , s ∈ ΩS , c ∈ ΩC , b ∈ ΩB ,
(27)

u
DX ,buy

c,b,t + u
DX ,sell
c′ ,b′ ,t ≤ 1 ∀c ∈ ΩC , b ∈ ΩB , b

′ ∈ ΩB , t ∈ ΩT , c
′ ∈ ΩC .

(28)

The constraints in (26)–(28) are defined to prevent the VPP
from taking advantage of the arbitrage opportunity. According
to (26) and (27), the VPP cannot purchase electricity from the
DA/futures market and then sell it to the futures/DA market.
Moreover, the constraint in (28) indicates that the VPP is unable
to buy from one of the power blocks of contract c and then
sell to another power block of contract c′. It should be noted
that c′ is defined so that the VPP cannot benefit from the price
difference between futures market contracts. Consequently, the
VPP is unable to take advantage of price differences between
the electricity markets. It should be emphasized that (28) differs
from (19). The purpose of (28) is that the VPP cannot benefit
from the price difference between different contracts. In con-
trast, the purpose of (19) is that the VPP cannot simultaneously
buy and sell a specific block of a specific contract.

∑
wpp∈ΩWPP

Pi
wpp,t ,s+

∑
pv∈ΩPV

Pi
pv,t ,s+

∑
ess∈ΩESS

Pi
ess,t ,s+

∑
dg∈ΩDG

Pi
dg,t ,s

= PDi,t ,s+
∑

c

∑
b

PDX
c,b,t +PDA

t ,s +
∑
j∈ΩI

flowi, j ,t ,s

∀i ∈ ΩI , t ∈ ΩT , s ∈ ΩS ,

(29)
flowi, j ,t ,s

S base = Bline
i, j ×

(
𝛿i,t ,s − 𝛿 j ,t ,s

)
∀i, j ∈ ΩI , t ∈ ΩT , s ∈ ΩS , (30)

PDi,t ,s = Loadi,t ,s −
∑

fl

Pi
fl ,t ,s ∀i ∈ ΩI , t ∈ ΩT , s ∈ ΩS .

(31)
The power balance constraint is defined in Equation (29).

The power flow of lines and the demand of each node are
represented in (30) and (31), respectively.

C DG
s =

∑
dg

∑
k

∑
t

adg,k × Pgdg,t ,s,k ∀s ∈ ΩS , (32)

Pgdg,t ,s,k ≤ Pmax
dg,k ∀dg ∈ ΩDG , k ∈ ΩK , t ∈ ΩT , s ∈ ΩS , (33)

Pdg,t ,s =
∑

k

Pgdg,t ,s,k ∀dg ∈ ΩDG , t ∈ ΩT , s ∈ ΩS , (34)

Pmin
dg

× udg,t ,s ×UAdg,t ,s ≤ Pdg,t ,s ≤ Pmax
dg

×udg,t ,s ×UAdg,t ,s ∀dg ∈ ΩDG , t ∈ ΩT , s ∈ ΩS , (35)

Pdg,t ,s − Pdg,t−1,s ≤ RUdg ∀dg ∈ ΩDG , t ∈ ΩT , s ∈ ΩS , (36)

Pdg,t−1,s − Pdg,t ,s ≤ RDdg ∀dg ∈ ΩDG , t ∈ ΩT , s ∈ ΩS . (37)

The constraints in (32)–(37) are related to the technical and
economic constraints of DG units. In (32), the total operation
cost of DG units is calculated. The capacity of each DG unit is
divided by k power blocks, and the price of each power block is
increased ascendingly. Consequently, DG operation costs can be
modelled linearly. In (33), the power of each block is bounded,
and the total generation of each DG unit is considered in (34).
The constraint in (35) represents DG units’ minimum and max-
imum generation limits. In this constraint, the failure status of
each unit is determined by the parameter UAdg,t ,s . When UAdg,t ,s

equals zero, the unit fails, and when it equals one, the unit is
working. In other words, this equation determines each DG
unit’s on or off status and failure status. In order to model the
ramp rates of DG units, the constraints in (36) and (37) are
represented.

C ESS
s =

∑
ess

∑
t

aess ×
(
Pdch

ess,t ,s + Pch
ess,t ,s

)
∀s ∈ ΩS , (38)

Pess,t ,s = Pdch
ess,t ,s − Pch

ess,t ,s ∀ess ∈ ΩESS , t ∈ ΩT , s ∈ ΩS ,
(39)

Pdch
ess,t ,s ≤ P

dch,max
ess × udch

ess,t ,s ∀ess ∈ ΩESS , t ∈ ΩT , s ∈ ΩS ,
(40)

Pch
ess,t ,s ≤ P

ch,max
ess × uch

ess,t ,s ∀ess ∈ ΩESS , t ∈ ΩT , s ∈ ΩS ,
(41)

udch
ess,t ,s + uch

ess,t ,s ≤ 1 ∀ess ∈ ΩESS , t ∈ ΩT , s ∈ ΩS , (42)

SOCess,t ,s = SOCess,t−1,s +
(
Pch

ess,t ,s × 𝜂
ch
ess − Pdch

ess,t ,s∕𝜂
dch
ess

)
×Δt ∀ess ∈ ΩESS , t ∈ ΩT , s ∈ ΩS , (43)
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8 GHASEMI-OLANLARI ET AL.

(1 − DODess ) × SOC max
ess × Δt ≤ SOCess,t ,s ≤ SOC max

ess

×Δt ∀ess ∈ ΩESS , t ∈ ΩT , s ∈ ΩS . (44)

The constraints related to ESS modelling are given in (38)–
(44). The constraint in (38) calculates the degradation cost
of the ESS. In (39), the total power of ESS is defined.
The discharging and charging power of ESS are bounded in
(40) and (41), respectively. The constraint in (42) prevents
simultaneous charging and discharging of ESS. The state of
charge (SOC) of each ESS is formulated in (43) and bounded
in (44).

Pfl ,t ,s ≤ Pmax
fl

∀ fl ∈ ΩFL , s ∈ ΩS (45)

The maximum power that each FL can curtail is defined in
(45).

𝜉 −
(
RDX + RDA

s + RRetail
s −C DER

s

)
≤ 𝜂s ∀s ∈ ΩS (46)

𝜂s ≥ 0 ∀s ∈ ΩS (47)

The risk modelling is represented in (46) and (47). The vari-
able 𝜉 represents value at Risk (VaR), and 𝜂 is a non-negative
variable equal to the difference between VaR and VPP profit.
If the profit of VPP is smaller than 𝜉in scenario s, the value of
𝜂becomes positive; otherwise, it is zero.

The proposed VPP bidding strategy modelling problem is
illustrated in Figure 4. As can be seen in this figure, the pre-
sented model includes three parts. In the first part, the historical
data of uncertainty parameters are given to the LSTM neural
network to be predicted. The forecasted parameters and DG
unit information are given to the scenario generation and reduc-
tion module in the second part. In the last part, the generated
scenarios are applied to the optimization problem to solve the
MILP problem.

5 NUMERICAL RESULTS

5.1 Input data

The required input data can be divided into two parts, data
related to neural network training and data related to the
optimization problem. The training data for neural networks
includes historical data of uncertainty parameters and neural
network settings. Here, the considered uncertainty parameters
are electrical loads, DA market price, wind speed and solar radi-
ation. The input data for the considered uncertainty parameters
is derived from Spain electricity demand [34], Spain DA market
prices (OMIP) [35], and the Brownfield meteorological station
in Texas [36], respectively. Since the data used in this research are
real data, they are correlated with each other; therefore, the gen-
erated scenarios are affected by this correlation. For instance,
changes in the DA market prices and electrical loads usually hap-

FIGURE 4 Schematic modelling of the proposed virtual power plant
(VPP) optimal bidding strategy problem. DA, day-ahead; DG, distributed
generation; ESS, energy storage systems; FL, flexible loads; MTTR, mean time
to repair; MTTF; mean time to failure; WPP, wind power plant.

pen simultaneously. This is also true for wind speed and solar
radiation data. Additionally, to fit the model, the electricity load
data is scaled down to 1:1500. The input data is collected on an
hourly resolution from 1 January 2019 to 31 December 2021.
The LSTM network is configured so that the previous 48-h data
are used as inputs for predicting each data. Additionally, the data
are divided into three parts; Train, Validation, and Test, which
represent 80%, 10% and 10% of the total data, respectively. The
LSTM network is trained using train and validation data, and
test data is used to assess its performance. Moreover, the mini-
batch technique and L2-regularization are utilized to accelerate
the training process and avoid over-fitting. In order to evaluate
the performance of the LSTM network, error indices such as
mean absolute error (MAE), root mean squared error (RMSE),
and mean absolute percentage error (MAPE) are considered.
Finally, the 41st week of 2021 (11 October to 17 October) is
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GHASEMI-OLANLARI ET AL. 9

selected from the forecasted data as the sample week for the
optimization problem.

There are different technologies within the VPP, such as DG,
ESS, WPP, PV and FL, and each of these technologies consists
of two units. The capacities of first and second DG unit are
equal to 6 and 5 MW, respectively. WPP units are considered to
be 6 and 9 MW. PV units have a capacity of 4 and 6 MW, and
FLs are assumed to handle 0.5 and 1 MW. Further technical and
economic data of DGs, FLs and ESS are extracted from [19]
and [20]. Similarly, WPPs and PV technical data are derived from
[15] and [33], respectively. In order to evaluate the effectiveness
of proposed model, a 22-node radial network is considered as
the test system [38].

The VPP can sign base and peak contracts in the futures mar-
ket. The rules used to implement the futures market in this study
are similar to those presented in [6], [29], and [35]. Base and peak
contracts can be signed at off-peak and peak hours of the week,
respectively. Note that 8–11 am and 7–11 pm are considered to
be daily peak hours. According to [18], each contract consists
of four purchase and sale power blocks, and the amount of the
power blocks is equal to 2.5, 5, 7.5, and 10 MW. The selling and
buying prices are the same in the first power block, and these
prices have been selected based on the Spain futures market for
the 41st week of 2021 [40]. The price of other purchase/sale
power blocks increases/decreases gradually with a certain per-
centage [18]. It should be noted that the peak contract price is
always higher than the base contract price.

The DA market price was derived from the Spanish spot
market price from 11 October to 17 October 2021 [35]. As men-
tioned, this paper assumes that the DA market price is constant
and is not updated during the days of the week. According to

[41], the retail price is assumed as 281
€

MWh
.

In order to model the failure of DG units, data on MTTF and
MTTR is required. According to the technology of these units,
the MTTF and MTTR are selected as 450 and 50 h, respectively
[42]. It should be noted that in risk modelling, the value of the
confidence level (𝛼) is equal to 0.9.

The LSTM network is implemented using Python 3.9 soft-
ware and the Keras and Tensorflow libraries [43–45]. The
optimization algorithm used for training the network is Adam,
which is one of the most widely used solvers in deep learn-
ing applications [46]. The mixed-integer linear programming
(MILP) formulation of the proposed model is optimized in
GAMS 24.3 software using the CPLEX 12.6 solver [43] and
[44], over a personal system with a 3.0 GHz corei7 CPU and
64GB of RAM.

5.2 Simulation results

In this section, the obtained results of proposed optimal bid-
ding strategy of the VPP in a weekly time horizon are presented.
The problem is formulated as both deterministic and stochastic
models. In the deterministic case, the LSTM network perfor-
mance is evaluated. Several scenarios and risk constraints model
the problem in stochastic cases. Additionally, the impacts of

TABLE 2 Evaluation of LSTM neural network performance using MAE,
RMSE, and MAPE indices.

Error

criteria Load (MW)

Price

(Euro/MWh)

Wind speed

(m/s)

Radiation

(kW/m2)

MAE 518.501 10.379 0.662 0.037

RMSE 655.027 15.14 0.905 0.056

MAPE (%) 1.94 9.631 7.106 —

Abbreviations:LSTM, long short-term memory; MAE, mean absolute error; RMSE, root mean
squared error; MAPE, mean absolute percentage error.

unit failure and arbitrage opportunity are considered in stochas-
tic cases. The following cases are considered to investigate the
effectiveness of proposed model.

∙ Case 1: Deterministic problem of optimal bidding strategy of
VPP

∙ Case 2: Two-stage stochastic problem of optimal bidding
strategy of VPP considering risk constraints

∙ Case 3: Case 2 and considering the impact of DG units’
failure

∙ Case 4: Case 3 and considering arbitrage opportunity

5.2.1 Case 1

In this case, a deterministic problem is modelled using (9)–
(45) without considering scenarios and risk constraints. Then,
the problem is solved by comparing two sets of forecasted
and actual data of uncertainty parameters to determine the
difference between the obtained results. Figure 5 shows the
prediction results of the uncertainty parameters using the
LSTM network as well as their actual values. It should be
noted that the scenarios depicted in Figure 5 are not taken
into account in this case. Based on the illustrated results, the
LSTM network is able to predict the trend of each uncertainty
parameter properly. Wind speed and solar radiation data are
transformed into power and used to solve the optimization
problem.

Table 2 displays various error indicators to evaluate the neural
network performance. MAE, RMSE and MAPE are considered
to measure the error between the forecasted and actual data.
These indicators are discussed in [49]. As shown in Table 2,
the MAPE is not calculated for solar radiation data due to the
existence of zero values in this data.

The results of the deterministic problem using the forecasted
and actual data are reported in Table 3. This table shows that the
problem can be solved with and without considering constraints
(26)–(28). By ignoring the constraints (26)–(28), the VPP can
benefit from the price difference between DA and futures mar-
kets. The results of Table 3 indicate that the VPP profit error is
low, and the LSTM network can predict the parameters accu-
rately. It can be seen that VPP has a higher error when the
arbitrage opportunity is considered. It is due to the high amount
of exchanged power between VPP and the DA market that can
lead to more error in the final forecasted data.
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10 GHASEMI-OLANLARI ET AL.

FIGURE 5 Actual and forecasted values of electricity loads, DA market price, wind speed, and solar radiation. DA, day-ahead.

The high accuracy of the LSTM network in predicting time
series allows the VPP operator to propose a more precise strat-
egy in the markets. Furthermore, accurate prediction of RES
generation facilitates the high penetration of these units. One of
the main purposes of this study is investigating the accuracy of
LSTM network in uncertainties capturing and considering their
impact on the optimization problem.

5.2.2 Case 2

In this case, the problem is developed as a stochastic model
and solved considering several scenarios. Due to considering

TABLE 3 Numerical results of case 1 with and without considering
arbitrage constraints for actual and forecasted data.

With (24)–(26) constraints

(no arbitrage)

Without (24)–(26)

constraints (arbitrage)

Parameters Actual Forecasted Actual Forecasted

Futures market
revenue
(×103

€)

56.170 58.478 305.765 274.418

DA market
revenue
(×103

€)

5.113 10.556 −193.411 −150.481

Retail revenue
(×103

€)
780.124 775.731 781.958 777.591

DER cost
(×103

€)
48.422 48.379 48.379 48.379

VPP net profit
(×103

€)
792.985 796.339 845.8982 853.104

Error (%) — 0.42 — 0.85

Abbreviations: DA, day-ahead; DER, distributed energy resource; VPP, virtual power plant.

many uncertainty parameters, scenario generation for all of
these parameters will increase the computational burden of the
optimization problem. In this regard, due to the low forecast
error for electricity load and solar radiation (see Table 2), no
scenario is generated for these parameters. On the other hand,
based on Table 2, since the forecast error of wind speed and
DA market prices is relatively high, 3 and 15 scenarios are
generated for the wind speed and DA market prices, respec-
tively. Thus, in this case the total number of scenarios is equal
to 3 × 15 = 45.

The expected profit of the VPP, in this case, is equal to
810.203 × 103

€, which is calculated without considering the
risk of fluctuation in the DA market prices. Figure 6 demon-
strates the generation of VPP and its interaction with the DA
and futures markets with 𝛽 = 0. In this figure, positive and
negative values indicate the sale and purchase of power, respec-
tively. Furthermore, positive and negative values for the ESS
are discharging and charging power, respectively. The gener-
ation of VPP shows that it acts as a dispatchable unit. For
instance, at hour 41, the VPP generation exceeds its load, so
VPP sells its surplus power to the upstream network. On the
other hand, at hour 69 the amount of load consumed by VPP
is greater than its generation, so the required extra power is
delivered from the upstream network. At 4 o’clock, the load
consumption and the DA market price are both low. Therefore,
power is purchased from the DA market by VPP and used for
charging ESS. In contrast, at hour 106, the load consumption
and the DA market price are both high. In this regard, VPP
reduces the FLs and discharges ESS to sell power to the DA
market.

According to Figure 6, VPP often appears as a power seller
in the base contract and as a power buyer in the peak con-
tract. In general, VPP tries to sell its extra power to a market
with a higher price and supply its required power by buying
power from a market with a cheaper price. The required power
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GHASEMI-OLANLARI ET AL. 11

FIGURE 6 Generation of VPP and its
interaction with DA and futures markets in case 2
with 𝜷 = 0. DA, day-ahead; VPP, virtual power plant.

FIGURE 7 Generation of VPP and its interaction with DA and futures markets in case 2 and for 𝜷 = 1. DA, day-ahead; VPP, virtual power plant.

of VPP can be supplied by both the DA and futures mar-
kets during certain week hours. For example, at hour 70, 2.5
and 3.64 MW of VPP required power are supplied by buying
power from the futures and DA markets, respectively. This is
because the power blocks of each futures market contract are
constant. On the other hand, it is more economical for a VPP
to supply the remaining power by buying power from the DA
market than buying the next power block of the futures mar-
ket. A similar situation occurs for selling power to markets (e.g.
hour 43).

As mentioned, high fluctuations in DA market prices increase
the risk of this problem. Therefore, the risk-averse problem will
be solved if 𝛽 is 1. In case 2, with 𝛽 = 1, the expected profit
of VPP and the amount of CVaR are equal to 771.503 × 103

€

and 771.128 × 103
€, respectively. The power generation of

VPP and its interaction with the DA and futures markets with
𝛽 = 1 are illustrated in Figure 7. As shown, the amount of
sold power in the base and peak contracts is increased. How-
ever, the amount of purchased power from futures market is
decreased. For example, during hours 156 to 162, the amount of
sold power in the base contract is increased, while at hours 57
and 71, the amount of purchased power from the peak contract
is decreased. In general, the VPP interaction with the futures
market is increased while it is decreased with the DA market.
For instance, at hours 32 to 49, the amount of sold power to
the DA market is decreased. The results of risk-averse problem
show that by increasing 𝛽, due to the high price volatility, VPP
tendency to participate in the DA market is reduced. Therefore,
VPP prefers to exchange power with the futures market, which
due to its constant prices is less risky. It should be noted that by
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12 GHASEMI-OLANLARI ET AL.

FIGURE 8 Generation of VPP and its interaction with DA and futures markets in case 3 with 𝜷 = 0. DA, day-ahead; VPP, virtual power plant.

reducing the risk of problem, the expected profit of VPP can be
decreased.

5.2.3 Case 3

In case 2, VPP utilizes DG units during the week due to the low
operating cost and high flexibility. However, these units may fail
during the weekly timeframe of the problem. Therefore, it is
necessary to consider the impact of DG unit failure, which is
discussed in this case.

In case 3, different scenarios are generated to model the fail-
ure of DG units using the exponential distribution function [7].
First, 1000 scenarios are generated for each DG unit, and the
generated scenarios are reduced to 10 using the widely used K-
means method. The scenario generation and reduction process
is repeated 10 times in order to ensure adequate coverage of the
various DG unit failure scenarios. Therefore, 10 sets of 10 sce-
narios are obtained for each DG unit. The resulting scenarios
are then merged and reduced to 15 final scenarios. Then, these
scenarios are mixed with the scenarios of the previous case, and
a total of 15 × 45 = 675 scenarios are obtained for case 3.

Due to considering the failure of DG units, the expected
profit of VPP, in this case, is 728.099 × 103

€, which shows a
reduction compared to the risk-neutral mode of the previous
case. Like the previous case, the most probable scenarios are
reported as the output of the problem. The generation power
of VPP and its interaction with the DA and futures markets
with 𝛽 = 0 is presented in Figure 8. According to this figure,
the interaction of VPP with the base contract is decreased, and
VPP often appears as a buyer in the futures market. Moreover,
the amount of exchanged power between VPP and the DA mar-
ket is decreased compared to risk-neutral mode of the previous
case. For example, in hours 101 to 116, when the second unit

of DG is failed, the amount of sold power to the DA market
is decreased. In this case, ESS are used more to compensate
the lost power resulting from the failure of DG unit. It should
be noted that due to the failure of DG unit, the power gener-
ation of VPP is reduced compared to risk-neural mode of the
previous case.

Two factors of high fluctuations of the DA market price and
the failure of DG units can increase the risk of problem in
this case. Although the risk management can reduce the risk of
problem due to these two factors, the expected profit of VPP
can be also reduced. The risk-averse problem is solved in this
case, and the expected profit of VPP is equal to 636.047 × 103

€,
whereas the CVaR is equal to 605.579 × 103

€. Figure 9 illus-
trates the power generation of VPP and its interaction with
the DA and futures markets with 𝛽 = 1. It is shown that
the amount of purchased power from the futures market is
increased to compensate the lost power due to DG unit fail-
ure and to reduce risk. In addition, the amount of sold power
to the DA market is decreased due to high price fluctuations.
The amount of power generated by the DG unit is significantly
reduced to decline the risk of problem. Therefore, the utilization
of ESS is increased in this case.

5.2.4 Case 4

The VPP participation in the DA and futures markets allows
VPP to benefit from the price difference between these two
markets when VPP acts as an arbitrageur. For example, when
a VPP purchases power from the upstream network, it is prob-
able to purchase surplus power from one market in order to sell
the remained power at a higher price to another market. The
constraints in (9)–(47) are used to solve this case ignoring the
constraints in (26)–(28). By considering the failure of DG units,
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GHASEMI-OLANLARI ET AL. 13

FIGURE 9 Generation of VPP and its interaction with DA and futures markets in case 3 with 𝜷 = 1. DA, day-ahead; VPP, virtual power plant.

FIGURE 10 Generation of VPP and its interaction with DA and futures markets in case 4 with 𝜷 = 0. DA, day-ahead; VPP, virtual power plant.

the expected profit of VPP, in case 4, is 828.753 × 103
€, which

is higher than the expected profit of VPP in case 2. This com-
parison shows the importance of considering the advantage of
an arbitrage opportunity. The power generation of VPP and its
interaction with the DA and futures markets with 𝛽 = 0 is
presented in Figure 10. According to this figure, the exchanged
power with the DA and futures markets is increased. Moreover,
VPP exchanges more power than its consumption in these mar-
kets. For example, at hour 69, VPP needs to buy power from
the upstream network to supply its loads. Therefore, due to the
low price of the peak contract in the futures market, VPP buys
surplus power from this market and sells the remained power

to the DA market with a higher price. On the other hand, at
hour 41, the amount of VPP power generation is more than its
consumption. Therefore, VPP sells its extra power along with
the purchased power from the DA market to the futures market
to maximize the profit. As shown in Figure 10, VPP benefits
from the exchange of power with the DA and futures markets,
even when the second DG unit is failed (hours 101 to 116),
which confirms the importance of arbitrage. Moreover, accord-
ing to the obtained results presented in Figure 10, VPP often
appears as a power seller in the DA market, which indicates
the higher price of this market in comparison with the futures
market.
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FIGURE 11 Generation of VPP and its interaction with DA and futures markets in case 4 with 𝜷 = 1. DA, day-ahead; VPP, virtual power plant.

TABLE 4 Numerical results of the proposed VPP optimal bidding strategy problem for cases 2 to 4 in risk-neutral and risk-averse modes.

Results

Case 2 Case 3 Case 4

𝜷 = 0 𝜷 = 1 𝜷 = 0 𝜷 = 1 𝜷 = 0 𝜷 = 1

Expected profit (×103
€) 810.203 771.503 728.099 636.047 828.753 703.999

CVaR (×103
€) 755.113 771.128 387.328 605.579 427.202 666.547

Base contract revenue (×103
€) 26.472 48.918 1.419 −23.241 −186.225 81.421

Peak contract revenue (×103
€) −22.475 −3.702 −35.529 −76.090 −300.545 −142.416

DX revenue (×103
€) 3.997 45.215 −34.110 −99.332 −486.770 −60.994

DA revenue (×103
€) 97.877 22.449 43.142 −10.835 601.916 45.124

Retail revenue (×103
€) 756.751 748.503 757.879 773.491 752.723 747.337

DGs cost (×103
€) 48.379 44.622 38.743 27.060 39.070 27.440

ESS cost (×103
€) 0.0434 0.0431 0.0684 0.214 0.0444 0.0278

DER cost (×103
€) 48.422 44.665 38.812 27.275 39.115 27.468

Abbreviations: CVaR, conditional value at risk; DX, Derivatives Exchange; DA, day-ahead; DER, distributed energy resource; DG, distributed generation; ESS, energy storage system; VPP,
virtual power plant.

By solving the risk-averse problem, the expected profit of
VPP is equal to 703.999 × 103

€, and the amount of CVaR is
equal to 666.547 × 103

€. Figure 11 illustrates the power genera-
tion of VPP and its interaction with the DA and futures markets
with 𝛽 = 1. According to Figure 11, and similar to the risk-
averse mode of case 3, VPP reduces its exchanged power with
the DA market as well as the power generation of DG units to
manage the problem risk. However, compared to the risk-averse
mode of case 3, the expected profit of VPP is compensated to
an acceptable level due to the arbitrage opportunity.

Table 4 summarizes the VPP revenues and costs in cases 2
to 4 with 𝛽 = 0 and 𝛽 = 1. As seen in this table, one of
the primary sources of VPP’s profit is the retail revenue, which
is due to the high retail price. In other words, the high retail

price encourages the VPP to supply its electrical loads first.
This acknowledges that for the VPP operator, supplying elec-
trical loads has a higher priority than participating in upstream
markets. Another point that can be observed in Table 4 is the
gap between the values of expected profit and CVaR when beta
equals 1. The two main factors that increase the risk of the
problem are DA market price scenarios and DG failure status
scenarios. As shown in Figure 5, DA market price scenarios have
a high variation range. In other words, the standard deviation of
these scenarios is high. On the other hand, the failure status
scenarios of DGs cover a wide range of statuses of these units.
Additionally, since DGs are one of the main units of the VPP
for power supply, their failure significantly impacts the VPP’s
profit. These factors increase the variation range of the objective
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GHASEMI-OLANLARI ET AL. 15

FIGURE 12 Expected power generation of VPP and its interaction with DA and futures markets in cases 2 to 4 for risk-neutral and risk-averse modes. DA,
day-ahead; DX, Derivatives Exchange; VPP, virtual power plant.

function, and as a result, the gap between expected profit and
CVaR increases. In addition, Figure 12 compares both risk-
neutral and risk-averse results of the expected power generation
of VPP and its interaction with DA and futures markets in
all defined cases. According to this figure, for all cases, the
exchange of VPP with the DA market is reduced by consider-
ing 𝛽 = 1. It should be noted that the highest exchange with
the markets is related to the risk-neutral mode of case 4, in
which VPP uses the opportunity of arbitrage to increase its
profit. Furthermore, the revenue obtained from the DA mar-
ket in the risk-averse mode of case 4 is positive, even though
the amount of power exchanged is negative. This indicates that
although VPP often appears as a buyer in the DA market, it
benefits from DA market during hours when the market price is
high. It is important to note that using the opportunity of arbi-
trage is confirmed to be an effective solution for increasing the
VPP’s profit in the DA market.

6 CONCLUSION

Here, the medium-term problem of the optimal bidding strategy
of a technical and commercial VPP was modelled considering
the risk constraints. The proposed VPP can participate in the
DA and futures markets to maximize its profits. The impact of
DG unit failure, which is the most widely used unit of VPP, was
also examined in the proposed model. Many uncertainty param-
eters were considered in the proposed model, which first were
predicted using the LSTM network with an acceptable accu-
racy, and then different scenarios were generated to cover their
uncertainty.

The behaviour of VPP was examined in risk-neutral and risk-
averse modes in each of the four considered cases. In case 1,

a deterministic model of the problem was solved using actual
and forecasted data to assess the accuracy of the LSTM net-
work. The obtained results of case 1 confirmed that the LSTM
network could accurately predict the uncertainty parameters. In
case 2, the deterministic case is developed as a stochastic model
ignoring the impact of DG units’ failure. In a risk-neutral mode,
regardless of the high price fluctuations in the DA market, VPP
exchanged power with the upstream network. In the considered
risk-averse mode, VPP reduced its interaction with the DA mar-
ket and increased its interaction with the futures market. It is due
to taking into account the high price fluctuations in the DA mar-
ket. In case 3, the impact of DG units’ failure was considered.
The results of case 3 showed that the expected profit of VPP
in the risk-neutral mode was decreased by 10.13% compared to
the risk-neutral mode of case 2. In this case, the DA market
price fluctuations and the failure of DG units were two fac-
tors that increased the risk. Therefore, in the risk-averse mode,
although ESS utilization was increased, the interaction between
VPP and the DA market along with the power generation of
DG units were decreased. In case 4, the effect of using arbitrage
opportunity was investigated. The results of this case showed
that despite the DG units’ failure impact, the expected profit of
VPP increased by 13.82% compared to case 3, which confirmed
the importance of being an arbitrageur. In summary, the results
of this paper showed that the participation of the VPP in the
futures market reduces the risk caused by the DA market prices
and the DG units’ failure. The participation of the VPP in both
DA and futures markets also provides the possibility of using
the arbitrage opportunity.

Although the LSTM neural network has an excellent ability
to predict time series, it consumes a lot of memory and time
in the learning process. As a result, other neural networks,
such as gated recurrent unit, can be used to solve this issue.
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Furthermore, other futures market contracts, such as call-
option and put-option, can be implemented in this problem,
which will be the subjects of future research.

NOMENCLATURE

Indices

b, b′ Indices of power blocks in futures market contracts
c, c′ Indices of futures market contracts

dg Index of distributed generation (DG) units
ess Index of energy storage systems (ESS)
fl Index of flexible loads (FL)

i, j Index of network nodes
k Index of power blocks of DG units

pv Index of photovoltaic (PV) units
s Index of scenarios
t Index of time periods (hour)

wpp Index of wind power plant (WPP) units

Sets

ΩB Set of power blocks in futures market contracts
ΩC Set of futures market contracts

ΩDG Set of DG units in virtual power plant (VPP)
ΩESS Set of ESS units in VPP
ΩFL Set of FL units in VPP
ΩI Set of network nodes
ΩK Set of power blocks of DG units
ΩPV Set of PV units in VPP
ΩS Set of scenarios
ΩT Set of time periods

ΩWPP Set of WPP units in VPP

Constants & Parameters

{⋅}
min
, {⋅}

max
Minimum/maximum limits of bounded
variables

S base Base apparent power (kVA)
𝜆Retail Retail price in distribution network

(€/MWh)
Δt Duration of each time period
𝛼, 𝛽 Confidence level and weighting factor in

conditional value at risk (CVaR) method
Bline

i, j Susceptance of distribution line between
node i and j (per unit)

DODess Depth of discharge of ESS units
Loadi,t ,s Electrical load of VPP in node i, period t ,

and scenario s (MW)
P

DX ,Block
c,b Maximum power can be sold/bought

through the block b of futures market
contract c (MW)

RUdg, RDdg Ramp up/down of DG units (MW/h)
TC DX

c,t Connectivity matrix of allowed hours for
trading in the futures market contract c

UAdg,t ,s Connectivity matrix of availability of DG
units (1 means DG unit is available and 0
means failure)

adg,k Cost of DG units for block k (€/MWh)
aess Degradation cost of ESS units (€/MWh)

𝜂dch
ess , 𝜂

ch
ess Discharging/charging efficiency of ESS

units
𝜆DX ,sell

c,b , 𝜆
DX ,buy

c,b Selling/buying price of block b of futures
market contract c (€/MWh)

𝜆DA
t ,s Day-ahead (DA) market price in period t

and scenario s (€/MWh)
𝜋s Probability of occurrence of scenarios s

Variables

PDi,t ,s Electrical demand in node i, in period t, and
scenario s (MW)

P
DX ,sell

c,b,t , P
DX ,buy

c,b,t Power sold/bought through the block k of
futures market contract c (MW)

Pgdg,t ,s,k Output power of block k of DG units in
period t , and scenario s (MW)

Pi
dg,t ,s Total output power of DG units in node i,

period t , and scenario s (MW)
Pdch

ess,t ,s , P
ch

ess,t ,s Discharging/charging power of ESS units
in period t , and scenario s (MW)

Pi
ess,t ,s Output power of ESS units in node i,

period t , and scenario s (MW)
Pi

fl ,t ,s Power curtailed by FL units in node i,
period t , and scenario s (MW)

Pi
pv,t ,s Output power of PV units in node i, period

t , and scenario s (MW)
P

DA,sell
t ,s , P

DA,buy
t ,s Power sold/bought in the DA market

(MW)
Pi

wpp,t ,s Output power of WPP units in node i,
period t , and scenario s (MW)

SOCess,t ,s State of charge of ESS units in period t , and
scenario s (MWh)

flowi, j ,t ,s Power flow between node i and j , in period
t , and scenario s (MW)

𝛿i,t ,s Angle of node i, in period t , and scenario s

𝜉 Value at risk (VaR)
𝜂s Difference between VaR and profit of VPP

in scenario s

Binar y variables

u
DX ,sell
c,b,t , u

DX ,buy

c,b,t Sign state of block b of futures market con-
tract c in period t (1 means signed and 0
means not signed)

udg,t ,s On/off state of DG units
udch

ess,t ,s , u
ch
ess,t ,s Discharging/charging state of ESS units

u
DA,sell
t ,s , u

DA,buy
t ,s Sold/purchased power state of VPP in DA

market.
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